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ABSTRACT

It is well recognized that the material properties
in fiber reinforced components are strongly dependent on
the fiber_orientation. In mold filling processes involving
short fiber reinforced composites, fiber orientation occurs
as a result of the flow induced stresses. It is important

to be able to predict this flow induced orientation.

A numerical method has been developed previously
to predict the in-plane fiber orientation in plane flow.
This scheme is refined to enable predictions for fiber
orientation in axisymmetric flow. The numerical method
is verified by comparing numerical and analytical solu--

tions for fiber orientation in Poiseuille flow.

The fiber orientation may be described by certain
orientation parameters, which relate the degree of col-
limation to the material properties. These orientation
parameters are incorporated into both the plane and axi-
symmetric flow algorithms, thus providing a link to

available structural analysis routines.




iii

Several numerical examples of practical
importance are presented. A prediction for the fiber
orientation near molded holes is established by determin-
ing the fiber orientation resulting from flow around a
circular inclusion. 1In a further example, the process for
molding an axisymmetric disk is simulated to determine the

numerically predicted fiber orientation.
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CHAPTER 1. INTRODUCTION

Composite materials are becoming widely used,
especially for aerospace applications where stiff, strong
lightweight materials are required. However, traditional
hand lay-up methods for fabricating composite materials
are expensive and time-consuming and, hence, can only be
used when increased structural performance outweighs cost
requirements. With the advent of less expensive fabrica-
tion techniques, composites are becoming sound economic

alternatives for many other applications.

One promising inexpensive fabrication method is
injection molding, a process in which a plasticized
charge is forced under pressure into the cavity of a
closed die where it (the charge) is formed into the
shape of that cavity. During this mold filling process,
fiber alignment occurs due to fluid stresses induced by
the flow. Since the material properties and strength
of the resulting component part are strongly dependent
on the orientation of the fibers, it is essential to be

able to predict this flow induced fiber orientation.




An early attempt to predict flow-induced

orientation was performed by Jeffery [9]. Jeffery devel-
oped equations describing the motion of a single ellipsoi-
dal particle immersed in a Newtonian fluid. Goldsmith and
Mason [7] have used Jeffery's equations to solve for the
orientation of ellipsoidal particles in both Couette and
hyperbolic radial flows. Based on Goldsmith and Mason's
predictions for orientation in hyperbolic radial flow,
Goettler et al. [6] presented a new manufacturing concept
for producing short fiber reinforcement in extruded rubber
hoses in a one-step fabrication process. Their idea was to
alter the die design such that a constriction of the flow
occurs at some intermediate point, followed by an expansion
to form the dimensions of the final product. In the region
of expansion, fiber orientation occurs in the hoop direc-
tion, thus providing the necessary reinforcement. The work
by Goettler et al, represents one of the early attempts to
control the orientation in short fiber molded components

based on analytical techniques.

Givler [5] has developed a numerical method to
predict in-plane fiber orientation in plane flow. The
method consists of solving the flow equations via the
finite element method and, subsegquently, numerically inte-
grating Jeffery's equations to determine fiber orientation.

Givler's work represents a first attempt to develop a




general method for determining fiber orientation, although

it is restricted to in-plane fibers in plane flow.

Once the fiber orientation is determined, material
properties may be predicted. Using the "aggregate model,"
McCullough et al. [13] have shown that two orientation
parameters are needed to relate the degree of orientation
to the material properties for planar fiber orientation
distributions, if the orientation distribution is symmetric
about the mode of the distribution. This mode orientation

angle serves to isolate the local principal material axes.

The first objective of this work is to determine
the orientation parameters and mean orientation angle for
the in-plane fiber distributions in plane flow from
Givler's numerical orientation scheme, thus linking Givler's
algorithm to available structural analysis programs to form
a complete numerical system capable of evaluating the in-

fluence of mold designs on the performance of molded parts.

The second objective of this work is to determine
fiber orientation in axisymmetric flow. In the axisymmet-
ric development, the assumption of planar orientation is
lifted. Again, the ultimate goal is to portray the fiber
orientation in terms of orientation parameters. A new set
of orientation parameters is needed in view of the non-

planar distribution assumption. McGee [14] has determined
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that four orientation parameters are necessary to compute
the material properties for non-planar distributions. It
is these four orientation parameters which are determined

in the axisymmetric scheme.

The contents of this thesis are organized in the
following manner: Chapter 2 introduces Jeffery's orienta-
tion equations and briefly summarizes the various assump-
tions made in the development of these eéﬁationsQ- The
analysis involved in determining fiber orientation from
Jeffery's equations is then explained. Chapter 3 reviews
Givler's numerical method for determining the in-plane
fiber orientation in plane flow, and introduces algorithms
for determining the mean orientation angle and the orienta-
tion parameters. Several numerical examples are presented.
Chapter 4 develops the numerical method for determining
fiber orientation in axisymmetric flow and, subsequently,
devises the scheme for computing the non-planar orientation
parameters. As in Chapter 3, several numerical examples
are included. Results and conclusions, as well as
suggestions for further research, are presented in

Chapter 5.




CHAPTER 2. GENERAL ORIENTATION EQUATIONS

In this chapter, orientation equations developed by

Jeffery [9] are incorporated to solve for fiber orientation.

Jeffery formulated equations to determine the motion of a

single rigid ellipsoidal particle immersed in a viscous

fluid subject to the following assumptions:

1.

4.

Apart from the local disturbance near the particle,
the fluid motion is steady and varies in space on a
scale that is large compared with the dimensions of

the particle.

The fluid which surrounds the particle is incom-

pressible and Newtonian.

The fluid velocity is low; hence, inertia terms may

be neglected (creeping flow).

The particle is non-sedimenting.

A summary of Jeffery's analysis is presented here.

For details, the interested reader is referred to the

original reference.

One important conclusion drawn by Jeffery is that




under the above assumptions, the particle ultimately
attains the velocity of the fluid which it displaces. This
enables one to track the paths taken by particles simply by

determining the flow streamlines.

To solve for the particle orientation, a
rectangular Cartesian coordinate set of axes Xy xg ’ xg ’
fixed in the particle, is defined such that the surface of

the ellipsoid is described by the expression:

x92 9?2 xH?
1 2 3
+ + =l
b2 X Y.
1 2 3

It is natural to determine the orientation of these axes
relative to a set of axes §l , §2 , §3 fixed in direction
whose origin lies at the center of the particle. The rela-
tive orientation between the two sets of axes is described
by the three Euler angles. If the particle is an ellipsoid
of revolution, however, only two of the three Euler angles
are needed to fully describe its orientation, as shOWn>in‘f

Figure 2.1l. A fiber may be modelled as an ellipsoid of

revolution.

Jeffery found expressions relating the hydrodynamic
torque acting on the particle to the spins about its axes.
With the assumption of creeping flow, the torque vanishes,

and by relating the spins about the axes to the Euler angles




Figure 2.1 Fiber orientation relative to a coordinate
system whose axes are fixed in direction

for an ellipsoid of revolution, the following expressions

result [7]:

3¢
1 _-= _= I .

-t = zy z, coscbl cotel Z4 51n¢l cotel

+ B[}dlz sind)l cotel + d23 coszqal

- 1l,= - .

+ d3l cos¢l cotel - §(d22 - d33) 51n2¢i] (2.1)
361 _ _ -
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where Ei and EAj are the respective components of vorticity
and rate of deformation defined by

Z., = i(uk,

i k) e.

i Y, ijk

- 1, — -
d. . A A
1] 2°71,] J.1
and B is a function of the particle aspect ratio, rp '
given by

It is desirable to determine the orientation
relative to an inertial reference frame since the fluid
kinematics are most naturally defined relative to a fixed
reference frame. For this purpose an inertial Cartesian
coordinate system Xy s Xy 4 Xg is introduced such that each
X axis points in the same direction as the corresponding

X axis. Obviously, the orientation of the particle axes

relative to the inertial frame can be described by the same



Euler angles, ¢l and el , used to describe the axes
relative to the El , §2 , §3 system. In this new coordi-

nate system, (2.1) and (2.2) are transformed to

D¢
1 _ - - .
5E- T %1 z, coszbl cotE)l z3 51n¢1 cotel
+ B[} d12 51n¢l cotel + d23 cosqul
1 .
+ d3l coscpl cotel - 7(d22 - d33) 51n2¢i] (2.3)
Del :
e T T %o s;n¢l + Z4 coscpl + B[élZ coscpl cosZGl
1 . . .
+ 3 d23 51n2¢l Sln291 + d3l 51n¢l cosZGl
+ l(d - d,,) cos2¢, sin28
4722 33 1 1
+ 3., +4,,) sin2e (2.4)
4722 33 1 ‘
D() _ 9() o( ) o( ) a( )
where - 5t~ T3t + uq -521— + u, —525— + U, 3X3

and z. and di' are components of the vorticity and rate of

1 J
deformation tensor relative to the xl ’ x2 r Xg coordinate
system. Equations (2.3) and (2.4), or (2.1) and (2.2),

enable one to fully determine the orientation of a fiber in

flow fields under the restrictions stated above.

One final limitation of the above equations is that
they were developed for a single particle; hence, they do

not account for particle interactions in a fluid containing
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many particles. Indeed, in typical mold filling

operations, fiber volume fractions of 30-40% are common

and fiber interations may become very significant. However,
the analysis involved in dealing with such interactions is
at the present time intractable; therefore, such inter-

actions are not treated in this work.

2.1 Use of Jeffery's Equations to Determine Fiber

Orientation

Upon inspection of (2.3) and (2.4), one notices
the existence of vorticity and rate of deformation com-
ponents. These components must first be determined and
substituted into Jeffery's equations, which are then

integrated to obtain the fiber orientation.

The solution to the flow equations must satisfy
conservation of mass and momentum requirements, along with
the constitutive approximation for the fluid. Conservation
of mass and momentum are universal laws applicable to all
fluids, but the constitutive relation is merely an approxi-
mation for modelling the behavior of each specific fluid.
In this work, the "fluid" consists of a Newtonian fluid
containing a concentration of suspended fibers. For a low
volume fraction of fibers, the influence of the fibers on

the behavior of the overall fluid is minimal, and the
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Newtonian constitutive assumption is valid. However, a
larger concentration of fibers exerts a considerable in-
fluence on the constitutive behavior of the suspension.
Maschmeyer and Hill [10] have shown that when a high concen
tration of 3 mm fibers is mixed in a Newtonian fluid, the
suspension becomes highly pseudoplastic. Thus a power law
constitutive assumption appears valid for suspensions of

high concentration.

The degree of orientation of the fibers can also
be expected to have an influence on the constitutive prop-
erties of the suspension. One certainly anticipates dif-
ferent constitutive behavior in regions where fibers are
highly aligned than in regions of random orientation. To
include this effect, however, the relationship between
viscosity and degree of orientation must first be deter-
mined. Thereafter, an iterative procedure is needed since
the fluid mechanics has an effect on fiber orientation
which in turn alters the fluid mechanics. However, for
the remainder of this work, the vicosity dependence on

fiber orientation is neglected.




CHAPTER 3. PLANE FLOW

This chapter deals with in~plane fiber orientation
in plane flow. Numerically, the flow equations are
easier to solve in plane flow since the flow is two- M
dimensional. Alsé, the fiber orientation equations sim-
plify considerably, and in special cases, can be solved
analytically. In Section 3.1, the appropriate simplifica-
tions are introduced into the fiber orientation equations.
Furthermore, it is shown that in-plane fibers maintain
their in~-plane orientation and one of the orientation
equations is eliminated. Section 3.2 present an analyti-
cal solution for fiber orientation in plane Poiseuille
flow. This solution provides a basis for checking the
numerical scheme. The numerical method is developed in
Section 3.3. The orientation parameters which relate the
degree of orientation to the material properties are in-
troduced in Section 3.4 and a method for determining them
as well as the mode of the distribution in terms of the
orientations of a finite number of fibers is presented.
Finally, in Section 3.5, a number of numerically deter-
mined solutions are presented. To check the numerical

scheme, the fiber orientation in plane Poiseuille flow is

12
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evaluated and the results are compared with the analytical
solution in Section 3.2. Also, the fiber orientation in
flow around a circular inclusion in both finite and in-
finite width channels is determined. The latter examples
are of pragmatic importance because they provide predic-

tions for the orientation around molded holes.

3.1 Orientation Equation for In-Plane Fibers in

Plane Flow

Consider plane flow in which variations in the
Xq coordinate direction may be ignored. For this type of
flow, several of the vorticity and rate of deformation

tensor components are identically zero:

Inserting the appropriate simplifications into Equations

(2.3) and (2.4) one obtains:




+ B[d23 cosz¢l - %(dzz-d33)sin2¢1] (3.1)

_B . .
—-——-—4[2d23 81n%¢1 sin26, + (4

1 d33)c052¢1 51n261

22°

+ 3(d22+d33)sin261] (3.2)

Equation (3.1) clearly indicates that the in-plane response
of a fiber is independent of the out-of-plane orientation.
If one considers fibers initially oriented in the plage

of the flow (91=ﬁ/2), then equation (3.2) reduces to gg—=
which indicates that a fiber remains in-plane. The re-
mainder of this chapter deals exclusively with in-plane
fibers; hence, only the single diffefential equation (3.1)

needs to be solved to completely determine the fiber

orientation.

It is worthwhile to note for later reference that,
under the above simplifications, Equations (2.1) and (2.2)

reduce to the single differential equation:

QL

¢ -
1_3

- , + Bl

23 cosZcbl - %(dzz-d33)sin2¢1] (3.3)

Qo

Although the above assumptions have considerably

simplified the analysis, (3.1) and (3.3) are still
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extremely difficult to solve analytically except for some
very simple flows. The next section deals with a flow
where an analytical solution does exist. Thereafter, a
procedure is developed for numerically determing fiber

orientation for more complicated flows.

3.2 Fiber Orientation in Plane Poiseuille Flow =

Analytical Solution

Consider the pressure-driven, steady, creeping
flow of an incompressible Newtonian fluid through a rec-
tangular channel of very large aspect ratio as shown in
Figure 3.1, where the flow is in the x3»direction. The
ratios H/w and H/L are small compared to unity and thus
in regions away from the edges of the channel, the veloc-
ity variations occur only in the X, direction. The fiber
orientation in this fully developed region is to be

determined.

Under conditions of unit flow, the normalized

velocity profile is

i
pofw
o—
'_l
1

Y
S

us3
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Figure 3.1 Geometry for plane Poiseuille flow

and the components of the vorticity and rate of deforma-

tion are computed to be
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0 O 0
dij = 0 O LT
[0 %I 0
du
- 3 - - 2
where T = dx2 = 3x2/H

Substituting into Equation (3.1), one obtains:

o¢ 3¢
1 1 _ r 2 2 .2
ST + u38x3 = n 2+1(rp cos ¢1 + sin ¢1) (3.4)

If one deals with fibers entering the domain perpendicular
30
to the flow streamline (ie, ¢1=0. at x3=0), then 5;;~=0 and

(3.4) reduces to

d¢
dx

1 _ T

. 2
3 u3(rp +1)

2 2 . 2
(r_ “cos ¢1 + sin ¢l)

and the resulting solution is

I‘x3/u3
tan ¢1 = rp tan E;:T7Eé

or
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2x2x3

2_.2
(H —Xz)(rp+l/rp)

tan ¢1 = r tan|- (3.5)

Assuming a fiber aspect ratio of 50, the fiber orientation
is plotted in Figure 3.2 for H=1. One immediate observa-
tion to be made from the figure is that a distinct layer
of fibers aligned parallel to the streamlines exists near
the wall boundary. This alignment correlates well with ex-
perimental observations of fiber alignment near wall bound-

aries in short-~fiber injection molded components.

Having attained an analytical solution, one may
now proceed to develop a numerical scheme to predict fiber
orientation. The known analytic solution in this section

can be used to check the accuracy of the numerical method.

3.3 Numerical Method

Except for very few simple flow geometries,
Equation (3.1) cannot be solved by analytical methods.
However, one may wish to determine fiber orientation for
complicated flow situations which exist in many molding
processes. With this motivation, the necessity to develop
a numerical scheme to determine fiber orientation is ob-
vious. The majority of the material covered in this sec-

tion was previously developed by Givler [5].
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As mentioned previously, the first step in solving
for fiber orientation is to obtain the flow field. .
The finite element method has been used extensively in
the literature to solve fluid mechanics problems with ex-
cellent results and consequently, is incorporated in this
work. The details of the method employed herein are fully
described in References 2 and 5. The analysis utilizes
the six-node triangular element shown in Figure 3.3 to
solve the plane and, later, axisymmetric flows. In the
finite element analysis, the continuity, momentum, and
constitutive equations are reduced to a set of algebraic
equations via the Galerkin method and after solving this

system of equations, a discretized solution is obtained.

From the discretized solution for the fluid
mechanics, it remains to determine the fiber orientation.
This is accomplished by determining the orientation of

individual fibers as they traverse the flow streamlines.

Figure 3.3 Six-node triangular element
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Obviously, unless some collimation is evident, one
cannot know precisely the initial orientations of all fi-
bers. Indeed, if the initial orientations were known, it
would not be feasible to track each fiber through the do-
main. An alternative approach is to select a number of
streamlines which sensibly cover the domain in which the fi-
ber orientation is to be determined. Then a finite number
of fibers of varying initial orientations are allowed to
traverse each streamline, and the orientation of each fiber
is computed at various locations along the streamline. Thus
information is obtained about the dispersion of fibers as
well as the principal direction of orientation. Usually,
an initially random orientation distribution is input. A

random distribution will be defined in a later section.

To find the streamlines, one must first determine
the stream function, . From the numerical solution,
the stream function values are known at the nodal
points as shown in Figure 3.4. To isolate a streamline,
the finite element grid is scanned element by
element to identify nodal points having the particular

values of the stream function, ¢ _ , corresponding to the

(o]

streamline. However, except in rare circumstances the
streamline will not intersect an element boundary exactly
at a nodal point. Therefore, linear interpolation is used

to determine the locations at which the streamlines
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nodal points

streamline

Figure 3.4 Determination of streamlines from numerical
fluid mechanics solution

intersect the element boundaries. After scanning every
element, a collection of coordinates is obtained which
corresponds to locations where the streamline crosses the
element boundaries. These points must next be placed in
order, which is accomplished by noting that if a streamline
crosses an element boundary, it must cross a second bound-
ary in the same element. Thus, given the initial point of
the streamline, shown as Py in Figure 3.4, the neighbor to
this point, P1 , can be determined since it lies on a
boundary to the same element. But P1 is also a point of
intersection for a second element. In'fact, all stream
points, with the exception of the first and last, mark

the intersection of the streamline and the boundary of
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two elements. Having found the second element containing

P, , the next neighbor, P, , may be found since it lies

1
in the same element as P1 . This procedure continues un-
til all the stream points are arranged in order, forming

the streamline.

In the exceptional case where a streamline crosses
an element boundary at a corner node, the stream point
marks the intersection of the streamline and more than two
elements (see Figure 3.5). However, simply disregarding
the elements which the streamline does not pass through
results in the stream point being contained by just two

elements.

Having formed the strealines, it remains to
numerically determine the orientations of fibers at se-
lected locations along each streamline. To do this, the
coordinate system whose axes remain fixed in direction and
translate along the fiber center (the §1 , 22 , §3 axes
in Figure 2.1) is adopted, and Equation (3.3) can be used
to determine the fiber orientation relative to this sys-
tem. The advantage of working with (3.3) is that differ-
entiation is with respect to a single variable, time. To
illustrate the procedure for integrating (3.3), suppose

the initial fiber orientation is given at point Po in

Figure 3.4 and the fiber orientation at location Py is
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o
Element 4

¢ 1
Element 8
¢ streamline

Pe

Element 5
-

Element |
Py

Figure 3.5 Streamline crossing corner node

desired. The time required for a fiber to travel from PO
to P1 can be estimated by dividing the distance from Py
to Py by the velocity at Py - This sets the time increment
for evaluation of the fiber orientation in (3.3). The
vorticity and rate of deformation components are approxi-
mated as constants over the length of the element equal

to those values computed at Po . With these approxima-
tions, a numerical differential equation solver using the
Runge-Kutta-Verner fifth and sixth order method is adopted
to solve (3.3). The differential equation solver is a
subroutine available from International Mathematical and
Statistical Libraries. The fiber orientation at subse-

quent stream points is obtained in an analogous manner.
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The stream points provide an effective sampling region in
which to plot fiber orientation provided that the elements

are appropriately sized.

Under the above procedure for determining fiber
orientation, it is obvious that the finer the mesh used,
the more accurate the solution provided roundoff errors do
not become significant. Questions of convergence of this
scheme were addressed by Givler [5} who showed that this

method yields sixth order convergence.

3.4 Orientation Parameters for Planar Fiber

Distribution

To this point, the methodology for obtaining the
orientations of individual fibers at discrete locations in
the flow field has been developed. The number of locations
containing prescribed fiber orientations depends on the
fineness of the mesh and the number of streamlines. If
fibers of varying initial orientations are input at the
beginning of each streamline then an orientation distri-
bution will result at locations downstream. It is well
known that the material properties of a fiber-reinforced
component are strongly dependent on the degree, as well
as, the direction of fiber orientation. Since the ulti-

mate interest is in determining material properties, it

is necessary to develop parameters relating the degree of
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orientation to the material properties.

In a given region, the distribution of fibers may
be described by an orientation density function, n. For a
planar distribution of fibers (see Figure 3.6), the orien-

tation density is a function of the single angle, q: viz,
n = n(¢1)

The orientation density function is periodic with
pericd m since the angle ¢1 + 7 depicts the same

orientation ¢1; hence,
n(¢q) = n(g¢,+m)

It is essential to confine 61 to lie within an interval

equal to w which isolates one period in the orientation

density function.

For a symmetric orientation distribution about
the mode, ¢i , such as the distribution in Figure 3.7, one
intuitively expects local orthotropic material properties
with the mode angle defining a principal material direc-
tion. The validity of the symmetric distribution assump-
tion is investigated for a real flow situation in Appendix

1, where it is determined that the symmetry assumption
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Figure 3.6 Planar fiber distribution

is valid. With this symmetry the orientation density
function is normalized such that
¢i+ﬂ/2

J n(¢;)de, =1 (3.6)
5

In an interval centered at the mode, the mean, <¢1>,‘and

the mode are equivalent.

McCullough et al. [13] have developed a technique
for relating the microstructure in a short-fiber composite
material to its material properties, which utilizes the
concept of the "aggregate model." The microstructure is

modelled as a collection of subregions, or grains, of
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5 ¢ Str ¢

Figure 3.7 Symmetric orientation distribution about the
mode

microlaminates of aligned fibers. McCullough assumed a

symmetric distribution about the mode and introduced a new

angle ¢ which is measured from the mode (see Figure 3.8).

n(g)

Figure 3.8 Orientation density as a function of ¢
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Obviously, ¢1 and ¢ are simply related through
Q
z = 9,791 (3.7)

Under this model, the material properties are related to

the dispersion through two parameters, fp and gp , defined

by -
2
fp = 2<cos > - 1 (3.8)
g, = sl8<cos’t> - 3] (3.9)
rTr/2
where <co§ng>= J n(z) cosmg dz. The orientation param-
o}

eters are constructed such that the degree of collimation
can readily be interpreted. For fp = gp = 1, the fibers
are perfectly aligned, whereas fp = gp = 0 signifies a
random distribution. Intermediate values of fp and gp
represent partial degrees of orientation. The orientation
parameters may be expressed in terms of ¢1 by substituting

(3.6) into (3.9) and (3.10):

¢i+ﬂ/2
f,= 2 nlb)cos”(9;-97)d0; - 1 (3.10)
o7
¢3+m/2
1 1 4
gP = H SJ n((t)l)COS ((bl—(j)i)dq)l—:g‘ (3.11)

L% h
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In order to obtain the orientation parameters from a dis-

tribution in ¢1 , the mode, ¢i , must be determined.

In this work, an orientation den;ity function is
not explicitly developed; rather, the orientations of a
finite number of fibers are determined, as explained pre-
viously. Hence, the orientation parameters must be ex-
pressed in terms of a finite number of fibers; this is
accomplished in the next section. The subsequent section

is concerned with the evaluation of ¢i .

3.4.1 Determination of the Orientation Parameters

from the Orientations of a Finite Number of Fibers

To be compatible with the numerical fiber
orientation scheme developed earlier, the orientation
parameters must be expressed in terms of the orientations

of a finite number of fibers.

To determine the appropriate expression for fp '
one begins by dividing the integral in (3.10) into a
finite number of intervals and approximating the behavior

over each interval via

¢i+ﬂ/2

-

n(;)cos” ($,-03)d0; = I nl(;) 1cos [(6,);-63140,
03 1=1
(3.12)
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where k is the number of intervals and (¢1)i is the average
value of ¢1 in the ith interval. Defining m, as the num-
ber of fibers whose oreintations lie in the ith interval,
it can be determined from the normalization condition

(3.6) that

m.
i _ .
5 = nl(67);180, (3.13)

where N is the total number of fibers. Substitution of

(3.13) into (3.12) yields

¢z+w/2 , K
n(o;)cos®(6,-03)d¢; = £ % mycos®[(41) ;=93]
¢i i=1
or equivalently,
¢i+ﬂ/2 R N
n(p,)cos” (§;-63)de; = 23 cos® (5, -63 (3.14)
o7 i=1 273

where ¢1 represents the orientation of the jth fiber.

J
Substituting (3.14) into (3.10), one obtains

: 2
£, ¢ &

o122

cos® (9, =42) - 1 (3.15)
. i .

i=1
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which is the desired expression relating fp to the orien-

tations of a finite number of fibers.

Following an analogous procedure, the following

expression for gp may be determined:

N
- 1|8 6. -00)-
9, * g[ﬁjilcos (¢lj 93) 3] (3.16)

The expressions (3.15) and (3.16) are summarized in

Table 3.1 for ease in reference.

With the above definitions of the orientation
parameters,a random fiber distribution may be modelled
from a finite number of fibers by adjusting the fiber

orientations such that fp = gp = 0.

Inspection of (3.15) and (3.16) reveals that the
mode, ¢i , must be determined to compute the orientation
parameters. The next section develops a method for deter-
mining the mode in terms of the orientations of a finite

number of fibers.




Table 3,1

Orientation Parameters Expressed in Terms of the

Orientation of a Finite Number of Fibers

t+h
It
|
™2

c°52(¢1."¢§ -1
i

i=1

Zloo |

o~

cost (9 4513
1

i

Ye!
]
-

i=1

3.4.2 Computation of the Mode

For a continuous distribution function, the
computation of the mode angle is quite straightforward.

One simply applies the definition of the mode:

dn(cpl)

35,
01767

Alternatively, in the case cf symmetric distributions
about the mode, the mode is equivalent to the mean in an

interval centered about the mode; viz,

¢i+ﬂ/2

43 = n(9,)d¢; = <oy> (3-17)

$
¢;-n/£
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The condition (3.17) is easier to apply when dealing with
distributions described in terms of the orientations of a
finite number of fibers. The procedure to determine ¢i
using (3.17) is illustrated for continuous distributions
and then extended to include distribution in terms of a

discrete number of fibers.

Consider the continuous distribution in Figure
3.7. 1In order to determine the mode via (3.17), the
period centered at the mode must be established. But
this interval is unknown until the mode itself is deter-
mined. Hence, an iterative procedure is necessary where
a mean is calculated based upon an initial guess for the
interval. A new interval centered around the calculated
mean is established, from which a new mean is calculated,
leading to a new interval. The procedure continues until
the difference between successively calculated mean
values lies within some tolerance requirement. To illus-
trate the iterative scheme, the mode for the distribution

in Figure 3.8 is determined iteratively in Figure 3.9.

These ideas are easily extended to cover
distributions described by the orientations of a finite
number of fibers. Consider, for example, the distribution
depicted by the four fibers in Figure 3.10. Within the

range 0 < ¢, <m, the orientations of the four fibers are
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Figure 3.9 Determination of the mode via the iterative

procedure. In (a) the mean angle, <¢1>1. is
calculated in the interval (0,m). A new inter-
val centered about <¢;> is established in (b)
from which a new mean, <¢i>,, is determined.
This procedure continues until a close estimate
for the mode is established in (d).




Figure 3.10
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Determination of the mode from the
orientations of a finite number of fibers
via the iterative procedure
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0.057, 0.157, 0.257 and 0.957. Calculating the mean, 51

from the standard definition

where N is the total number of fibers and ¢1. is the
orientation of the jth fiber,one obtains thejmean angle
depicted in Figure 3.10(a). Centering a ne@ interVél
about the computed mean angle, the orientation cf one

of the fibers changes from 0.957 to -0.057 and a new mean
results, which is shown in Figure 3.10(b). A further

iteration does not change the mean value.

3.5 Numerical Solutions

In this section the numerical method is used
to solve several example problems. The fiber orienta-
tion in plane Poiseuille flow is determined first,
and the results are compared with the analytical solution
developed in Section 3.2. Thereafter, several examples

of pragmatic interest are presented.

3.5.1 Plane Poiseuille Flow

Consider again the wall-bounded, steady,
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Newtonian flow in Figure 3.1. The analytical solution for
the orientation of fibers initially perpendicular to the
wall boundaries has been determined in Section 3.2. 1In
the present example, the fiber orientation is determined

numerically.

As previously stated, the first step in the
numerical scheme is to solve the flow equations via
the finite element method. Figure 3.11 depicts the finite
element mesh and associated boundary conditions incorpo-
rated to solve the flow problem. Newtonian constitutive

behavior is assumed.

The fluid mechanics results are presented in the
form of contour plots. Stream function, pressure, and
vorticity contours are plotted in Figures 3.12 through
3.14, respectively. It is, of course, possible to calcu-
late these quantities analytically for this simple flow.
Comparing the contour plots with the analytical solutions
reveals that the numerical flow solution is

accurate.

With the discretized solution to flow equations
at hand, the fiber orientation may be determined. 1In
Table 3.2, a comparison is made between the numerical and
analytical solutions for the orientation of a fiber ini-

tially perpendicular to the wall boundary traversing the
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streamline which traces the path Xy = 0.6. It is seen
that the numerical results compare favorably with the

analytical predictions.

Table 3.2

Comparison of Analytical and Numerical Solutions

in Plane Poiseuille Flow at x7=0.6 for a

Fiber Initially Perpendicular to the

Wall Boundary

0] ¢
1‘analyt:i.cal, 1 numerical,
X4 rad ’ rad
-0.753 -0.785
-1.08 -1.11
-1.23 -1.25

It is of interest to determine contours of the
mode and orientation parameters for this flow. However,
one must first determine the number of fibers needed to
adequately portray the orientation distribution. This
question is addressed in Appendix 2 where it is determined
that as few as ten fibers give good estimates for both

the mean fiber angle and orientation parameters.

A fiber plot, shown in Figure 3.15, reveals
information about the direction of orientation, as

well as, the degree of fiber alignment. It is readily
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observed from the figure that a high degree of alignment
is obtained in the wall region with the direction of
collimation parallel to the wall. Near the centerline,
the orientation is nearly random. These observations are
reinforced in the mode angle and orientation parameter
contour plots presented in Figures 3.16 through 3.18.
Fiber alignment in the wall region in short-fiber molded

components is a well known phenomenon.

It should be noted that, in the mode angle contour
plot, contocurs are not plottad in highly dispersed regions
(i.e., fp<0.4) since the fibers do not have much direction-
ality in these highly dispersed areas. The contours in
the more oriented regions are easier to interpret since
the "noise" imparted by plotting the contours in the dis-
persed regions has been eliminated. This condition is

applied to all future mode angle plots.

3.5.2 Flow Around a Circular Inclusion in a Finite

wWwidth Channel

A problem of more pragmatic interest is the
determination of fiber orientation in the region around
a molded hole in a short-fiber injection molded component.
The flow geometry consists of a finite width channel with
a centered circular inclusion. In this example, the ratio

of channel width to inclusion diameter is 10:1. The
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finite element mesh and boundary conditions to determine
the flow solution are depicted in Figure 3.19. Newtonian

behavior is assumed.

The boundary conditions require explanation.
Along the solid boundaries (i.e., the wall and inclusion
boundaries), the normal no slip condition is assumed. On
the centerline, adjacent to the inclusion, the shear stress

and the x., component of velocity are both equal to zero.

2
At the input and exit boundaries of the flow, it is assumed
that the fluid is far enough away from the inclusion that
the flow is unaffected by it; hence Poiseuille flow exists

along these boundaries.

The resulting stream function, pressure, and shear
stress contours are plotted in Figures 3.20 through 3.22,
respectively. Here, an analytical solution is not avail-
able, thus one must be guided by intuition in interpreting
the fluid mechanics solution. Inspection of the contocur
plots (especially the stream function contours) reveal

that the flow solution is reasonable.

One next determines the fiber orientation. Guided
by results in Appendix 2, ten randomly oriented fibers
are input at the beginning of each streamline. The re-
sulting orientation parameter and mode angle contours are

depicted in Figures 3.23 through 3.25. Several interesting
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observations can be made from these plots:

1)

2)

3)

As before in the Poiseuille flow example,

a distinct boundary layer of aligned fibers
exists in the region near the wall.

A second boundary layer of collimated fibers
is present resulting from flow around the
insert. Downstream from the insert there is
no mechanism available to misalign the fibers;
consequently, the boundary layer propagates
downstream.

A core of random fibers exists between the

two boundary layers.

It has been mentioned previously that the presence

of fibers leads to pseudoplastic fluid behavior, which may

be portrayed by a power law constitutive assumption.

Figures 3.26 through 3.34 present orientation parameter

and mode angle contours for various power law indices

under unit flow conditions. The primary observation to

be made is that lowering the power law index leads to a

larger core of random fibers.

3.5.3 Flow Around a Circular Inclusion in an Infinite

Wwidth Channel

In the previous example, the wall boundary played

an important role in determining the fiber orientation.
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One may wish to investigate the fiber orientation in a
channel of infinite width, thus isolating the inclusion as

the sole mechanism for orienting the fibers.

The finite element mesh and associated boundary
conditions to determine the flow field are. presented
in Figure 3.35. Newtonian behavior is assumed. This ex-
ample presupposes a constant unit far-field velocity pro-
file. The left,right, and top wall boundaries are placed
far enough away from the insert that the far-field velocity
profile exists at these outer boundaries. The resulting
stream function, pressure, and shear stress contours are

depicted in Figures 3.36 through 3.38.

Having ascertained the flow solution, the fiber
orientation is determined. Orientation parameter and mode
angle contours are presented in Figures 3.39 through 3.41.
These figures show clearly the expected presence of a

boundary layer of aligned fibers resulting from flow over

the inclusion.
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CHAPTER 4. AXISYMMETRIC FLOW

Having developed and demonstrated the numerical
method for determining fiber orientation in plane flow,
attention is now turned to the determination of fiber
orientation in axisymmetric flow. Defining a cylindrical
coordinate system as shown in Figure 4.1, it is known from
the assumption of axisymmetry that the 6 direction veloc-
ity as well as the variation of the r and z direction
velocities in the 6 direction of the fluid are identically
equal to zero. Consequently, the axisymmetric flow case
represents a two-dimensional flow regime, and the method
developed to predict fiber orientation in plane flow is
applicable to axisymmetric flow. However, the fiber
orientation equations have to be developed under the axi-
symmetric simplifications. This is accomplished in
Section 4.1. Furthermore, in this chapter, the assumption
of planar fibers is lifted, necessitating the development
of a new set of orientation parameters. This topic will
be discussed in Section 4.3. The analytical solution for
fiber orientation in Poiseuille flow is determined in

Section 4.2 and is compared with the numerical solution

75
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Figure 4.1. Cylindrical coordinate system

in Section 4.4. One final example, the fiber orientation
in a simulated disk molding operation, provides a practical

illustration of the numerical solution technique.

4.1 Fiber Orientation Equations in Axisymmetric Flow

To take full advantage of the simplifications
induced by axisymmetry, modifications must be introduced
into the fiber orientation equations. One can make use
of the axisymmetric simplifications if the fiber orienta-
tion is described relative to a cylindrical reference

frame as opposed to the Cartesian reference frame in
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Figure 2.1. The most judicious choice of a cylindrical
reference frame appears to be the one shown in Figure 4.2.

With this choice, the angle 61 is preserved; it becomes

Figure 4.2. Cylindrical reference frame and orientation
angles for describing fiber orientation in
axisymmetric flow




the angle between the fiber and the §3 (or z) axis. To
avoid confusion, it is renamed as 8. A new angle o is
defined as the angle between the r axis and the projection
of the fiber on the §2—§3 plane in a plane containing the
fiber and the z axis. Reference to Figure 4.1 reveals

that
o = ¢1-9 (4.1)

where 8 is the cylindrical coordinate angle. For the

analysis that follows, the cylindrical coordinates are

defined as y', 2, and 73 where

K1
i |
@l R

i
N

Referring to Figure 4.2, it is seen that the
cylindrical coordinates (§l) are related to the Cartesian

coordinates (x%) by

-1 -3

=y
%% = TcosB = §1cos§2
23 = Fsinf = §1sin§2
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From the above relations, the following partial derivatives

are easily evaluated:

&L _ 625 _ %L _ 4
—_1 2 3 =
Sy )% 8y
-2 =2 z2
§§T = cosy2 ﬁ%g = —§lsin§2 §§§ =0 (4.2)
8y Sy Sy
-3 =3 =3
§§I = siny2 ﬁ%i = §1cosy2 §§§ =0
Sy Sy Sy

The partial derivative terms above are needed for tensor
tranformations which will be performed later in the anal-

ysis.

To obtain the necessary equations to solve the
fiber orientation in axisymmetric flow, it is necessary
to transform all the vorticity and rate of deformation
components in Jeffery's equations (2.1) and (2.2) to
their respective components in cylindrical coordinates.
To do this, one must determine the tensor character of
the vorticity and rate of deformation components and then
transform these quantities according to the usual rules
of tensor transformation. Having transformed the tensor
guantities, they are then converted into physical

components.
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Dealing first with vorticity components, it is

known by definition that

i T 2%i3k%k3

N
)

where eijk is called the permutation symbol and defined by

0 if any two indices are equal
e - 1 if i,j,k are distinct and in cyclic
ijk — order (i.e., 123 or 231 or 312)
-1 if i,j,k are distinct but not in cyclic
{ order (i.e., 132 or 213 or 321)
Thus,
- Lo -
2] = %3y = p3)
2y, = (W3 = W3y) (4.3)
23 = %Wy = Wyp)

where ®» is the second order vorticity tensor defined by
n
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hence, Equations (4.3) simplify to

21 T Tw23
Z23.¥ Twy2

Now, the vorticity terms in (2.1) and (2.2) are Cartesian
components and thus can represent covariant, contravariant
or physical components since no distinction is made in the
Cartesian system. Since the partial derivatives (4.2) are
known, the vorticity terms are chosen to transform as con-

travariant components via

- - sa =B ..
B = 2 () (4.5)
sy &y7

Using (4.2), (4.4), and (4.5) one can compute 21(§)=

z1 (%)

2, ()

= -3 (%)

§%2
syt

_3 ..
& wtd(g)
8y
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=2 =3 . -2 =3 -
S -1 - - -
LIS gl LSS,
Sy~ Oy Sy dyj
=3 -3
= -cos® §§§ wlz(y) + rsiné §§T 521(y)
Sy Sy

- 2 = - - . - - -
= -rcos 6 wlz(y) +’rsin26 le(y)

It is desirable to switch to physical components, which is

easily accomplished as follows:

El(x) = _E/EII/EEEQ<12>(§)

= -<12>(y)

rb

where is the metric tensor.

2Q

Here, the usual bracketed notation for physcial
components is eliminated and, instead, the indices are
subscripted and given in terms of the coordinate labels.
The same procedure is employed to determine Ez(i) and
53(§) as a function of w<ij>(y), and the results are pre-

sented in Table 4.1.




83

The Cartesian components of the rate of deformation
tensor are computed in terms of the cylindrical components
following the same procedure. First, one notes that the
rate of deformation tensor is second order and defined by

d.. = L(v. .+v. .
diy = 5V, 54vy,5)

Table 4.1

Cartesian Components of Vorticity Tensor Expressed

in Terms of Cylindrical Components

21 (x) = —ugg

N
)
o~
Ll
e
Il

-sinb wrz —.cose Wo,

N
W
—_
"
N’
1]

cosb w__ - sinb w
rz wez

As before, the Cartesian components can represent either
covariant, contravariant or physical components and, hence,

the contravariant transformation is valid:
d,. (%) = datd(x)

i 533 48 -
S5 S50 308 ) (4.6)
Sy~ Sy
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Utilizing (4.2) and (4.6), the following expression may

be determined for azz(ﬁ):

- - -22 -

dzz(x) = 47 (%)
_ %2
sy 6y7
2-2 . 2-2 .
- - -24 =
= §:%—:§ @)+ ~§:%‘:'j* dl (@)
Sy~ ¢y Sy 8y

-2 -2 -2 =2
- cos@[%?Tall(§)+§§7512(?ﬂ—fsin@{%§T321(§)+§§§d22(éﬂ
Sy

Sy Sy Sy
- c0s26. atl(3)-TsinBcosd 32 (7)-FsinBeosd at%(¥)
+ fzsin2§ 522(§)

Again converting to physical components via
d<ij> = < /gjj at] (no sum on i or 3J)

one can determine

= - _ 2= = . - = . 2= =
dzz(x) = cos 6 d sin 26 dre + sin"6 d

rr 686

The transformation of the remaining rate of deformation

components follows an identical procedure and the results

are summarized in Table 4.2.
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The component transformations contained in Tables
4.1 and 4.2, as well as, the angle changes can be substi-

tuted into (2.1) and (2.2) to obtain

Sa _' - . = - - - - L= -
St = wre+(51ne mrz+cose wez)cos(a+e)cote+(51ne Wy,

-cosb Brz)sin(a+5)cotB+B[(sin§ aez-cos§ arz)sin(u
- ;’ . - - -— - - - . -— am ..
+6)cot5+{zsln26(drr dee)+00529 dre}COSZ(a+G)+(Slne drz

+cost aez)cos(a+§)cot8+%{(aee-a )

rr

+2sin28 are}sinz(a+§)] (4.7)

Table 4.2

Cartesian Components of Rate of Deformation Terisor

Expressed in Terms of Cylindrical Components

dy(x) = dy,

3. (%) = cos?F d__-sin28 d_,+sin’f &
22 rr r6 06

- - . 2= = - 2= =

d33(x) = sin” 0 drr+51n26 dre+cos 8 dee

dlz(x) = cosf drz—sine dez

d13(x) = sinb drz+cose 0z

(o]

d23(x) = %sin26(drr—dee)+00526 dre
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— = (sin6 mrz+cose wez)sin(u+6)+(—sin6 Wo,
+cosf wrz)cos(a+e)+B[(cose drz—51ne dez)cos(a+6)coszs
; ;, » ~ 3 -- - - 3 - »
+2{251n26(drr dee)+cosze dre}51n2(a+e)51n28

+(sinb drz+cose dez)sin(a+e)c0528+k{(drr—dee)cosze

e - 3= =y
-2sin26 dre}cosz(a+6)51n26+z(drr+dee)31n261 (4.8)

Since axisymmetry is assumed, (4.7) and (4.8) are indepen-
dent of 8, and can be simplified by inserting any discrete

value of 8, which results in the following:

sa _ _7 = x . 3 .

SE = wre+wezcosacot8 wr251nacotB+B[ erSLnacotB
+drecos2a+dezcosacot8+%(dGe—drr)sinZa] (4.9)

88 _ 3. sina+i 3 Y@ - -

5t = w6251na+wrzcosa+B[drzcosac0528+4(drr dee)c032a51n26

3,= = .
+Z(drr+d6e)51n28] (4.10)
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These equations can be further simplified by noting that
several vorticity and rate of deformation components are

identically equal to zero due to axisymmetry. For example,

N
il
i

ro =

@l

, and 4 are

Likewise, it can be shown that 562 , d oz

also equal to zero. Table 4.3 contains a complete descrip-

rb

tion of the physical components of  and d in terms of the
av eV}

velocities. Cancelling out all of the terms which are

identically zero in equations (4.9) and (4.10),

So. _ = . = . - =z .
St = wrzs1nacot8+B[ dr231nacot8+%(dee drr)31n2a]_ (4.11)
%% = Jrzcosa+B[arzcosac0328+%(arr-aee)COSZQSinZB
3,= = .
T(drr dee)SLnZB] (4.12)

These are the resulting equations describing fiber orien-
tation relative to cylindrical coordinate reference axes

in axisymmetric flow.

To this point, a coordinate system which
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translates with the fiber center and whose axes remain
fixed in direction has been adopted. As before, one may
wish to describe fiber orientation relative to an inertial
reference frame. A prudent choice of an inertial refer-
ence frame is one whose axes lie in the directions of the
§l axes. Thus, the cylindrical frame yl, yz, y3 is incor-
porated where each yi axis of this system lies in the same
direction as the corresponding §i axis of the ¥T, §2, 73

system. In this inertial reference frame, (4.11) and

(4.12) transform to

Da _ _ . _ . _ .
ot = wrZSLnacot8+B[ drzsz.noncot8+l§(dee drr)31n2u] (4.13)
DB _ ; :
ot = wrzcosa+B[drzcosacosze+%(drr dge)cos2a51n28
3 .
+Z(drr+dee)31n281 (4.14)

where

D() _ 8() s( ) S( )

Dt - st T Vrsr t YV, sz

is the substantial time derivative. The time derivative

dét) vanishes when the boundary conditions are time inde-

pendent.
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With the above fiber orientation equations at
hand, it is now possible to determine solutions for fiber

orientation in axisymmetric flow.

Table 4.3

Physical Components of the Rate of Deformation

and Vorticity Tensors in Axisymmetric Flow

0 0 5vr _ sz
8z ST
5<ij> =% 0 0 0
sV sv
—2 - —= 0 0
. dr Y ]
B 5V &V sv_ |
—= 0 5 (—= + —2)
Sr 8z Sr
d<ij> = 0 Gr/f 0
sV sV sv
5= -2 0 —
Y 5T 5z ]
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4.2 Analytical Solution for Fiber Orientation in

Poiseuille Flow

The pressure driven, steady, laminar,incompressible
flow of a Newtonian fluid through a long, smcoth round tube
provides a flow situation from which an analytical solution
for fiber orientation may be determined. The geometry for
this flow is depicted in Figure 4.3. For simplicity, a unit

radius and unit flow are considered. The velocity

—_— unit
7 -V flow

Figure 4.2 Schematic of Poiseuille flow

components are independent of €, thus the problem is

axisymmetric.

The flow solution is not difficult to determine

since the flow is unidirectional:




The only non-zero vorticity and rate of

deformation components are

dvz

Weg = 9 gp = 2%
dvz

dp, = g = %

Substituting into the fiber orientation equations
(4.13) and (4.14), one obtains (for time independent

boundary conditions):

Sa r sinocotf

—_— = === (B-1) (4.15)
Sz l-r2

B _ r cosa ,._

Sz = —I:;E— (1-B cos 28) (4.16)

} For large aspect ratios which exist in fibers, B is very
[ nearly equal to unity (i.e.; for rp=50, B=2499/2501).

Consequently, one may conclude from (4.15) that

Oleo
N{R
]
o
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Hence, o is a constant and (4.16) becomes an ordinary dif-
ferential equation in B. For fibers initially perpendic-
ular to the flow streamline (i.e., B=n/2 at z=0), the

solution to (4.16) is

cot B = r_tan -2r22 cos o (4.17)
P (1-x%) (x +1/x )

The solution for in-plane fibers is plotted in Figure 4.4
for a fiber aspect ratio of 50. A comparison of Figures
3.2 and 4.4 reveals that the in-plane fibers show identi-
cal orientation behavior with in-plane fibers in plane
Poiseuille flow. This is an expected result since in-
plane fibers experience identical fluid deformations and

rotation in both flows.

Equation (4.17) provides a known analytical
solution for fiber orientation in an axisymmetric flow
although it is necessarily restricted to a particular
initial fiber orientation. Nevertheless, it can be used
to check thé validity of the results predicted by the

numerical scheme.

To complete the development of the fiber
orientation scheme, orientation parameters must be deter-
mined for non-planar orientation states. This is accom-

plished in the next section.
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4.3 Orientation Parameters for Non-Planar Fibers

In dealing with axisymmetric flows, the planar
fiber orientation assumption has been lifted. Thus the
orientation distribution becomes a function of two angles

as shown in Figure 4.5; viz,
n = n(y,z)

such that

™ /2
J J n(y,c)siny dy dg = 1
[e o]

The angle ¢ is the planar angle defined in Section 3.4
while y is an axial angle. Both y and ¢ are measured
from principal material axes. The distributions are

assumed to have the following symmetrics:

n(y,z) = n(y+m,)
n(y,z) = n(-y,z+m)
n(YIC)' = n(YI-C)

Here, the first two symmetrics reflect the fact that the

orientation angles are not unique and the last symmetry
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~

J

/
L

Uy
/

Figure 4.5 Angle descriptors for orientation density
function

states that the distributions in ¢ is symmetric about the
2 axis. If one further assumes that the orientation den-

sity function is separable, i.e.,

n(y,zg) = nl(Y)nz(c)

then McGee [14] has shown that the following parameters

relating fiber orientation to the material properties
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result:
m/2
—— 2 —-—
fp = ZJ nz(c)cos ¢ dzg 1
o
w/2
1 4
g = =|8 n,(z)cos ¢ dz - 3
o ,

£ = [% cos y ny (y)siny dy - %}/2

g. = E cos Y n, (y)siny dy - {]/4

Here, fp and gp are the same orientation parameters de-
fined in Equations (3.8) and (3.9), while fa and 94
represent new orientation parameters which occur in the

absence of the planar distribution assumption.

The angles y and ¢ must be related to the
orientation angleso and B in Figure 4.2. McGee has deter-
mined that the axial angle Yy can be measured from any of
the principal material axes. If the z axis is assumed to
be a principal axis, then y simply represents B. With the
z axis chosen as one principal axis, the direction asso-
ciates with the modal wvalue of a, a°, in the r-6 plane

provides an estimate for a second principal axis. The
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procedure for calculating $9 presented in Section 3.4,
may also be utilized to determine a°. The. principal
axes are depicted in Figure 4.6. The angle ¢ is simply

related to o by

z = o-o°
6
principal
direction
a’ _
§
principal
direction
z

Figure 4.6 Principal axes from which orientation
distribution is measured
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Incorporating the above assumptions, the

orientation parameters may be expressed in terms of o and

R via
al+n/2 5
- -y O -
fp = ZJ nz(a) cos” (o=a°®)do 1
aO
1 a%+m/2 4
gp =z 8 J nz(a)»cos (a~a®)da = 3
aO

-

fa = 3[
|

/2 2
cos“B nl(B)SinB dg - 1}/2

(o]

b

/2
g, = |3

e

cos45An1(B)sinB dg - 1(/4

(@]

It remains to determine the orientation parameters

in terms of a finite number of fibers. For £ _ and g the

p p’
derivation follows identically that presented in Section

3.4 and the following expressions result:

2
P Njog

N
- 18 44, -q0)-
gp = 5|;Ii__2_1cos (oci 0°) 3:]

N
I cos (ai—a°) -1

th

where ay is the o-angle associated with the i fiber and

N is the total number of fibers.
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To derive an expression for fa , one starts with

the following approximation for the integral expression:

H
Y

i=1

k
2 . v
[:15 nl(Bi)cos 8i51nBiAB—{]/2 (4.18)

where the integral has been divided into k distinct inter-

th

vals and Bi represents some value of B in the i interval.

Now, denoting m, as the number of fibers in the ith inter-

val, it is possible to determine

m.

—§ = n;(B;)sinB, AB

Inserting into (4.18), one obtains.
k
- |3 2, _
fa = [ﬁ'z m; COs Bi :}/2
i=1
or equivalently,

N
- (3 2, _
fa = I:ﬁ.z cos Bi :]/2
i=1

Following the same procedure, the following expression for

g, may be derived:
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N
_ |5 4o -1
i=1

The expressions relating the orientation parameters to the

orientation of individual fibers are summarized in Table
4.4.

Table 4.4

Orientation Parameters for Non-Planar

Fiber Distributions

cosz(ai-a°) -1
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4.3.1 Random Fiber Orientation

A random fiber orientation state occurs when the
orientation parameters are all equal to zero. Table 4.5
lists the orientation angles for ten fibers which lead to
a random orientation distribution. These orientation
angles are used in the subsequent examples to simulate ini-

tially random fiber distributions.

Table 4.5

Orientation-Angles for Ten Randomly Oriented Fibers

B, rad o, rad
0.314 0.942
-0.565 2.199
-0.723 0.314
0.880 1.571
~-0.942 2.827
1.100 0.628
1.225 1.885
-1.257 2.513
1.382 0.0

-1.414 1.257
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4.4 Numerical Solutions

In this section numerical solutions for fiber
orientation in axisymmetric flows are presented. The first
example involves the determination of the fiber orientation
in Poiseuille flow, and the results are compared with the
.analytical solution developed in Section 4.2. 1In a second
example, the fiber orientation in a simulated disk molding

operation is determined.

4.4.1 Poiseuille-Flow

To check the numerical scheme, the numerical
solution for fiber orientation in Poiseuille flow (see
Figure 4.3) is determined. The finite element mesh with
associated boundary conditions to solve for the flow is
presented in Figure 4.7. The stream function, pressure
and shear stress contours for the fluid mechanics solution

are shown in Figures 4.8 through 4.10.

Having ascertained the flow solution, the fiber
orientation is determined. A comparison of analytically
and numerically predicted orientation is presented in
Table 4.6 along the y = 9/16 streamline. This streamline
corresponds to the path r=0.5. The agreement between the

numerical and analytical values is excellent.
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It is also of interest to plot the orientation
parameter contours for an initially random orientation dis-
tribution. Reference to Section 4.2 reveals that the a
orientations remain constant; hence, one need not plot con-
tours of a°, fp , and gp. Plots of fa and g, are presented
in Figures 4.11 and 4.12, respecti&ely. From these plots,
one detects the presence of the boundary layer of aligned

fibers parallel to the wall boundary in the region near

the wall boundary.

Table 4.6

Comparison of‘Numerical and Analytical Solutions

for Fiber Orientation in Poiseuille Flow along
the Streamline ¥ = 9/16

Initial Orientations Numerical Solutions Analytical Solutions

X B, o, B, a, B, a,
rad - rad rad rad rad rad
0.5 1.571 0.0 2.16 0.0 2.16 0.0
1.0 1.571 0.0 2.50 0.0 2.50 0.0
1.5 1.571 0.0 2.69 0.0 2.68 0.0
0.5 1.571 0.785 2.02 0.785 2.01 0.785
1.0 1.571 0.785 2.33 0.785 2.33 0.785

1.5 1.571 0.785 2.54 0.785 2.53 0.785
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4.4,2 Simulated Disk Molding Operation

A final example involves simulating an actual
axisymmetric disk molding  operation. Figure 4.13 depicts
the geometry for the problem. In the usual manner, the |
flow solution is determined first. The finite element
mesh and associated boundary conditions for Newtonian flow
are presented in Figure 4.14. A constant velocity profile
exists along the boundary where the fluid enters the domain
simulating the effect of a plunger pushing the fluid. The
usual no-slip condition is employed along the wall bound-
aries. The normal velocity and shear stress vanish along
the centerline. The boundary condition along the exit
boundary is the analytically determined solution for radial
flow satisfying the continuity and Navier-Stokes equations.
The resulting stream function, pressure, and shear stress
contours are presented in Figures 4.15 through 4.17,

respectively.

With the flow solution at hand, the fiber
orientation may be determined. To gain a better visual
perception of the type of orientation that occurs, ini-
tially in-plane fibers (a=0) are treated first. Examina-
tion of (4.11) reveals that in-plane fibers remain in-plane;
hence, fiber plots can be drawn. Figures 4.18 through 4.20

present fiber plots along three streamlines: one near
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both wall boundaries in the disk section and one which
runs through the disk center. Several conclusions may be
drawn from these in-plane fiber plots:

(1) Rapid alignment of in-plane fiber occurs in
the sprue section of ali three streamlines.
This is due to the very high normal stresses
which exist in the converging flow.

(2) In-plane fibers preferentially orient
parallel to the flow streamlines near the
wall boundaries in the disk.

(3) 1In-plane fibers orient perpendicular to the

flow streamlines in the center of the disk.

Next, the orientation is determined for initial
non-planar random orientation distributions. Figures 4.21
through 4.25 present the resulting contours of fa' From
these figures, the following conclusions may be reached:

(1) A very high degree of alignment in the

z direction (fa20.9) occurs throughout
the converging sprue section.

(2) In the wall region in the disk, the fibers

align perpendicular to the z direction
(fas—0.4)

(3) In the center section of the disk, the

distribution is moderately aligned in the

z direction (faQO.G) near the sprue, becoming
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widely dispersed (faQO) near the exit region

of the flow.

Contours of fp are shown in Figures 4.26 through
4.29. From these figures, one may conclude that, except
for a strip in the central region of the disk, the o
alignment is nearly perfect. To ascertain the direction of
o alignment, contours of a°® are plotted in Figures 4.30
and 4.31. These figures re?eal an in-plane alignment of
fibers (a=0) in both the sprue section and wall regions.
In the central region of the disk a moderate degree of

orientation exists (fa20.6) with a varying mode angle.

4.4.3 Comparison of Predicted and Actual Orientation

From micrographs, Ellery [4] has determined the
fiber orientation in axisymmetric disks under slow fill
rates for glass reinforced phenolics. Ellery found a high
degree of fiber orientation parallel to the flow stream-
lines in the wall region of the disk and a high degree of
orientation in the "hoop" direction in the center section
of the disk. This experimentally determined orientation

is depicted in Figure 4.32.

A comparison of the experimentally observed
orientation with the numerical prediction reveals a very

good agreement in the wall region of the disk. 1In the
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center section, however, the numerical scheme does not
predict a high degree of hoop direction reinforcement.
Table 4.7 presents the orientation of ten initially ran-
domly oriented fibers at the beginning of the disk section
and at the exit location along the streamline which tra-
verses the center section of the disk. It is seen that the
fiber orientation is predominantly in-plane at the begin-
ning of the radial section, and thus hoop direction align-
ment cannot occur. However, those fibers which do have a
significant degree of out-of-plane tilting at the entrancé
to the disk do tend to orient in the hoop direction. If
one introduces a fiber tilted 45° out-of-plane at the en-
trance to the disk, then upon reaching the exit section

the fiber has achieVed a hoop direction alignment. Thus
the discrepancy between experimentally observed and numer-
ically predicted orentation may be explained by postulating
that fiber interactions cause a significant degree of out-
of-plane tilting in the entrance region of the disk, and
the orientation mechanisms are able to orient the resulting

non-planar fibers in the hoop direction.
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Table 4.7

Numerically Predicted Orientations of Individual

(1)

Fibers along Center Streamline in an

Axisymmetric Disk

(

)

3
>3

(2)

(3)

Initial Orientation at Begin- Final
Orientation, ning of Radial Section, Orientation,
rad rad rad
B8 o B o B o
0.314 0.942 -1.99 3.1 -2.79 2.5
-0.565 2.199 -1.92 3.14 -2.87 3.10
-0.723 0.314 2.05 0.18 2.38 1.26
0.880 1.571 -2.16 3.13 -2.87 3.03
-0.942 2.827 -2.50 3.04 -2.78 2.34
1.100 0.628 2.08 0.19 2.38 1.27
1.225 1.885 1.33 3.12 0.324 2.75
-1.257 2.513 2.18 0.01 2.87 0.04
1.382 0.000 2.18 0.000 2.87 0.000
-1.414 1.257 -1.82 3.02 -2.37 1.89
- - 1.571 0.785 1.63 1.54
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Experimentally observed fiber orientation in an axisymmetric disk

Figure 4.32




CHAPTER 5. CONCLUSIONS

A numerical method has been developed for
determining the fiber orientation in arbitrary plane and
axisymmetric flows. The resulting fiber dispersion is
depicted by orientation parameters, which relate the degree
of fiber alignment to the material properties. In axisym-
metric flow, non-planar distributions are treated while
only planar distributions are allowed in plane flow. The
validity of the numerical method was proved by comparing

numerical results with known analytical solutions.

Several examples were considered. In Poiseuille
flow, a distinct boundary layer of aligned fibers parallel
to the flow streamlines was shown to exist in the wall re-
gion. This prediction correlates well with experimental
observations. It was determined that the presence of a
circular inclusion lead to boundary layer of aligned fibers
adjacent to and downstream from the insert. A prediction
for the fiber orientation in an axisymmetric disk was
established. The prediction correlated well with experi-
mental observations in the wall region of the disk and the

discrepancy in the central region could be explained by

135
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the failure of the theory to account for fiber interactions.

Several extensions to the theory are possible. A
more elaborate procedure to determine the principal mate-
rial axes in non-planar distributions should be developed.
In the axisymmetric flow examples presented in Section 4.4,
it was assumed that the z axis represented a local princi-
pal material direction. Clearly, this assumption in in-
valid for many flows, and a procedure needs to be developed
to determine the principal axes from the orientations of
a finite number of fibers. One possible method of attack
is to assume that the peak in the orientation density func-
tion defines one principal axis and. develop a pro-
cedure to determine the peak. Having found one principal
axis, the problem is no more difficult than the determin-

ation of the principal axes in a planar distribution.

A second extension involves the determination of
the effect of the fiber orientation on the viscosity of
the suspension. If this effect is significant, then an
iterative scheme would be necessary to determine the

fiber orientation, as duscussed in Section 2.1.

Givler [5] has discussed several other possible
extensions to the theory, including studying three-

dimensional and transient flows and determining the
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orientation equations for a viscoelastic suspending medium.
These extensions enable more accurate simulation of the

molding processes.
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APPENDIX 1

INVESTIGATION OF THE SYMMETRY OF AN

ORIENTATION DISTRIBUTION

In developing the orientation parameters, the
orientation distribution has been assumed to be symmetric
about the mode. In this appendix, the validity of this
assumption is investigated for planar distributions in
the plane Poiseuille flow example in Section 3.5.1. A
random fiber orientation distribution is input at the be-
ginning of the yY=-0.29 streamline and the skewness of the
distribution is studied at selected locations downstream.

The degree of skewness is described by the coefficient of

skewness (a3) defined by

— 3/2
az = M3/ (M)

where M2 and M3 are the second and third central moments,

respectively, defined by

™~ 2

_1 - i
My =§ % (& - 9)
i=1
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The coefficient of skewness is determined for varying

numbers of fibers.

Figures Al.l, Al.2, and Al.3 depict the
orientations of 100 initially random fibers at 0.5, 1.0,
and 1.5 inches downstream, respectively, from the random
end. Also presented in these figures are the numerically
computed mode angles. In Figure Al.4, the magnitude of
is plotted as a function of the number of fibers at
ajl

decreases to small values as the number of fibers is in-

a3

these same locations. It is readily observed that

creased. Since the orientation distribution function is
more accurately modelled by larger numbers of fibers, it
may be concluded that the assumption of symmetric distri-
butions is valid for this example. While the conclusions
from this specific example cannot be extended to other
flows, the results do lend credence to the assumption

of symmetric distributions.
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location 0.5
=-0.29 streamline

Distribution of 100 initially random fibers

in plane Poiseuille flow at a
inches downstream along the ¥

Figure Al.1l
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Distribution of 100 initially random fibers in

Figure Al.2

seuille flow at a location 1.0 inch

plane Poi

-0.29 streamline

downstream along the ¥



144

Figure Al.3 Distribution of 100 initially random fibers in
plane Poiseuille flow at the location 1.5
inches downstream along the y=-0.29 streamline
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APPENDIX 2

INVESTIGATION OF NUMBER OF FIBERS NEEDED TO

ACCURATELY PREDICT ORIENTATION PARAMETERS

In using the numerical orientation model, one
needs an estimate of how many fibers are needed to ade-
quately model the distribution and thus give accurate
estimates for both the mode angle and orientation param-
eters. Obviously, if too few fibers are used, grossly
inaccurate results may be obtained. On the other hand,

too many fibers leads to wasted computer time.

For this investigation, orientations were studied
at selected locations along the y=-0.29 streamline in the
plane Poiseuille flow example presented in Section 3.5.1.
These locations are identical to those studied in Appendix
1. Plots of ¢i ’ fp , and gp as a function of the number
of fibers are presented in Figures A2.1 through A2.3,
respectively, for locations 0.5, 1.0, and 1.5 inches
downstream from the initial point in the streamline, where
a random orientation state is input. It can be seen from

the figures that all parameters attain fixed values at all

locations when the number of fibers exceeds 50. To

146
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determine the dependence on numbers of fiber for fewer than
50 fibers, magnified plots are presented in Figures A2.4
through A2.6. From these figures, one can conclude that

in all cases, as few as 10 fibers provide accurate predic-
tions for all the parameters. This result is very encour-
aging in light of the fact that it is desirable to work

with as few fibers as possible.
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